AN INTRODUCTION TO MCSCF
ORBITAL APPROXIMATION

\[\Psi_{hp} = \psi_1(1)\psi_2(2)\ldots\psi_N(N) \]

- Hartree product (hp) expressed as a product of spinorbitals \(\psi_i = \phi_i \sigma_i \)
- \(\phi_i = \) space orbital, \(\sigma_i = \) spin function \((\alpha, \beta)\)
- Pauli Principle requires antisymmetry:

\[\Psi = \hat{A}\Psi_{hp} = |\psi_1(1)\psi_2(2)\ldots\psi_N(N)| \]
• For more complex species (one or more open shells) antisymmetric wavefunction is generally expressed as a linear combination of Slater determinants

• Optimization of the orbitals (minimization of the energy with respect to all orbitals), based on the Variational Principle) leads to:
HARTREE-FOCK METHOD

- Optimization of orbitals leads to
 - $F \phi_i = \varepsilon_i \phi_i$
 - $F = $ Fock operator $= h_i + \sum_i (2J_i - K_i)$ for closed shells
 - $\phi_i = $ optimized orbital
 - $\varepsilon_i = $ orbital energy
HARTREE-FOCK METHOD

- Closed Shells: Restricted Hartree-Fock (RHF)

\[\Psi = |\phi_1 \]

- Consider \(H_2 \):

\[\Psi = |\phi_1 \]

- The 2-electron case can be written more simply

\[\Psi = \phi_1(1)\phi_1(2)[\alpha(1)\beta(2) - \alpha(2)\beta(1)](2^{-1/2}) = \Phi \Sigma \]

- \(\Psi \) = (space function) (spin function)
Simplest MO for H₂ is minimal basis set:

\[\phi_1 = [2(1+S)]^{-1/2} (1s_A + 1s_B) \]

- \(1s_A, 1s_B\) = AOs on \(H_A, H_B\), respectively

Expectation value of energy \(<E>\) is

\[<E> = <\Psi|H|\Psi> = <\Phi|H|\Phi> <\Sigma|\Sigma> \]

- Since H is spin-free,
- Main focus is on space part:
 - \(\Phi = \phi_1(1)\phi_1(2)\)
 - \[= [2(1+S)]^{-1}[1s_A(1)+1s_B(1)][1s_A(2)+1s_B(2)] \]
\[\Phi = [2(1+S)]^{-1}[1s_A(1)1s_A(2) + 1s_B(1)1s_B(2) + 1s_A(1)1s_B(2) + 1s_A(2)1s_B(1)] \]

- First 2 terms = ionic, second 2 terms = covalent

- \[\Phi = [2(1+S)]^{-1} [\Phi_{\text{ion}} + \Phi_{\text{cov}}] \]

- So, HF wavefunction is equal mix of covalent & ionic contributions

- Apparently OK ~ equilibrium geometry

- Consider behavior as R --> \(\infty \): S --> 0

- \[\Phi --> 1/2 [\Phi_{\text{ion}} + \Phi_{\text{cov}}] \]

- \[\langle E \rangle --> 1/4 \langle \Phi_{\text{ion}} + \Phi_{\text{cov}} | H | \Phi_{\text{ion}} + \Phi_{\text{cov}} \rangle \]
• The Hamiltonian is

\[H = H_1^{(0)} + H_2^{(0)} + \frac{1}{r_{12}} \]

\[H_1^{(0)} = -(\frac{1}{2})\nabla_1^2 - \frac{Z_A}{r_{A1}} - \frac{Z_B}{r_{B1}} \]

• Plugging in & recognizing that as \(R \rightarrow \infty \), many terms \(\rightarrow 0 \):

\[\langle E \rangle_{R \rightarrow \infty} \rightarrow \frac{1}{2}[(E_{H+} + E_{H-}) + 2E_H] \]
• So, the HF wavefunction gives the wrong limit as H_2 dissociates, because ionic & covalent terms have equal weights.
• Must be OK $\sim R_e$, since HF often gives good geometries
• $HF/MBS \ D_e \sim 3.64 \ ev$. Cf., $D_e(expt) \sim 4.75 \ ev$
VALENCE BOND METHOD

- Alternative to MO, originally called Heitler-London theory
- Presumes a priori that bonds are covalent:
 - \(\phi_1 = 1s_A(1)1s_B(2); \quad \phi_2 = 1s_A(2)1s_B(1) \)
 - \(\Psi_{VB} = [2(1+S_{12})]^{-1/2}[\phi_1 + \phi_2]; \quad S_{12} = \langle \phi_1 | \phi_2 \rangle = S_{AB} \)
- Apply linear variation theory in usual way:
 - Dissociation to correct limit H + H
 - \(D_e \sim 3.78 \text{ ev}; \text{ cf.}, \quad D_e(\text{expt}) \sim 4.75 \text{ ev.} \)
So, the MO wavefunction gives the wrong limit as \(\text{H}_2 \) dissociates, whereas VB gives correct limit.

- Both MO and VB give poor \(D_e \)
- MO incorporates too much ionic character
- VB completely ignores ionic character
- Both are inflexible

- How can these methods be improved?
IMPROVING VB AND MO

• Could improve VB by adding ionic terms using variational approach:
 \[\Psi_{\text{VB,imp}} = \Psi_{\text{VB}} + \gamma \Psi_{\text{ion}} = \Psi_{\text{cov}} + \gamma \Psi_{\text{ion}} \]
 where \(\gamma \) = variational parameter.
 Expect \(\gamma \approx 1 \) \(\sim R = R_e \) & \(\gamma \to 0 \) as \(R \to \infty \)

• Generalized valence bond (GVB) method: W.A. Goddard III

• Since MO method over-emphasizes ionic character, want to do something similar, but in reverse
IMPROVING VB AND MO

• Improve MO by allowing electrons to stay away from each other: decrease importance of ionic terms. Recall (ignoring normalization)
 \[\Psi_{\text{MO}} = \phi_1(1)\phi_1(2): \phi_1 = 1s_A + 1s_B \]

• Antibonding orbital
 \[\Psi_{\text{MO}^*} = \phi_2(1)\phi_2(2): \phi_2 = 1s_A - 1s_B \]
 - Keeps electrons away from each other.
So, we write (ignoring normalization)

\[\Psi_{\text{MO,imp}} = \Psi_{\text{MO}} + \lambda \Psi_{\text{MO}}^* = \phi_1(1)\phi_1(2) + \lambda \phi_2(1)\phi_2(2) \]

- where \(\lambda \) = variational parameter
- \(|\lambda| \sim 0 \) at \(R = R_e \)
- \(\rightarrow 1 \) as \(R \rightarrow \infty \)

Can easily show that

\[\Psi_{\text{MO,imp}} = \Psi_{\text{VB,imp}} : \gamma = (1+\lambda)/(1-\lambda) \]

\(\Psi_{\text{MO,imp}} \) is simplest MCSCF wavefunction

- Gives smooth dissociation to \(H + H \)
- Called TCSCF (two configuration SCF)
H₂ RHF VS. UHF

- Recall that
 - $\phi_1 = [2(1+S)]^{-1/2} (1s_A + 1s_B)$: bonding MO
 - $\phi_2 = [2(1-S)]^{-1/2} (1s_A - 1s_B)$: anti-bonding MO

- Ground state wavefunction is
 \[\Psi = |\phi_1 \phi_1| \]
 - Ground state space function $\Phi = \phi_1(1)\phi_1(2)$
 - RHF since α, β electrons restricted to same MO
• Can introduce flexibility into the wavefunction by relaxing RHF restriction.

 - Define two new orbitals $\phi_1^\alpha, \phi_1^\beta$, so that

 - $\Phi_{\text{UHF}} = \phi_1^\alpha(1) \phi_1^\beta(2)$: Unrestricted HF/UHF, different orbitals for different spins: DODS

• Can expand these 2 UHF orbitals in terms of 2 known linearly independent functions. Take these to be ϕ_1, ϕ_2:

 - $\phi_1^\alpha = \phi_1 \cos \theta + \phi_2 \sin \theta \quad 0 \leq \theta \leq 45^\circ$

 - $\phi_1^\beta = \phi_1 \cos \theta - \phi_2 \sin \theta \quad \theta = 0^\circ$: RHF solution
• Can expand $\phi_1^\alpha, \phi_1^\beta$ in terms of $1s_A, 1s_B$

• Then derive $\langle E(\theta) \rangle$, $d\langle E(\theta) \rangle/d\theta$, $d^2\langle E(\theta) \rangle/d\theta^2$

 – Details in Szabo & Ostlund; 2 possibilities:

• Corresponds to Pople RHF/UHF stability test
As H-H bond in H$_2$ is stretched,

- Optimal value of θ must become nonzero, since
- We know RHF solution is incorrect at asymptote
- As $R \to \infty$, $\theta \to 45^\circ$
- Can express UHF wavefunction as

$$
\Psi_{UHF} = \cos^2 \Theta \left| \phi_1 \bar{\phi}_1 \right| - \sin^2 \Theta \left| \phi_2 \bar{\phi}_2 \right|
$$

$$
- \sin \Theta \cos \Theta \left\{ \left| \phi_1 \bar{\phi}_2 \right| - \left| \phi_2 \bar{\phi}_1 \right| \right\}
$$

- Note that 1st 2 terms are just MCSCF wavefunction
- 3rd term corresponds to spin contamination
\[\Psi_{UHF} = \cos^2 \Theta \mid \phi_1 \bar{\phi}_1 \mid - \sin^2 \Theta \mid \phi_2 \bar{\phi}_2 \mid - \sin \Theta \cos \Theta \{ \mid \phi_1 \bar{\phi}_2 \mid - \mid \phi_2 \bar{\phi}_1 \mid \} \]

- At \(\theta=0^\circ \), \(\Psi_{UHF} = \Psi_{RHF} = \mid \phi_1 \bar{\phi}_1 \mid \)
- At \(\theta=45^\circ \), \(\Psi_{UHF} = \frac{1}{2} \mid \phi_1 \bar{\phi}_1 \mid - \frac{1}{2} \mid \phi_2 \bar{\phi}_2 \mid - \frac{1}{2^3} \Psi \)
- So, UHF wavefunction correctly dissociates to \(\text{H} + \text{H} \), but wavefunction is 50-50 mixture of singlet and triplet
- UHF therefore gives non-integer natural orbital occupation numbers.

Simplest way of going beyond simple RHF
MCSCF ACTIVE SPACES

- How many bonds (m) am I going to break?
- How many electrons (n) are involved?
- Active space is (n,m)
 - n electrons in m orbitals
 - Full CI within chosen active space: CASSCF/FORS
- H₂: 2 electrons in 2 orbitals
- H₂=CH₂?
Consider simple Walsh diagram

- $\varepsilon_{orbital\ energy}$
- $\varepsilon = \text{orbital energy}$

In H_2O, a_1, b_1 both doubly occ lone pairs: HF OK
- $b_1 = \text{pure p HOMO, } a_1$ s character \rightarrow 0 as $\theta \rightarrow 180^\circ$
- At $\theta = 180^\circ$, (a_1, b_1) become degenerate π orbital
- In \(\text{CH}_2 \), \(a_1 = \text{HOMO} \), \(b_1 = \text{LUMO} \)
- At \(\theta = 90^\circ \), \(N(a_1) \sim 2 \), \(N(b_1) \sim 0 \): HF OK
- At \(\theta = 180^\circ \), \((a_1, b_1) = \) degenerate \(\pi \) orbital, so

\[
\Psi = (2)^{-1/2} \{ |a_1 \bar{a}_1| - |b_1 \bar{b}_1| \}
\]
- There are 2 equally weighted configurations
Most general form of $^1\text{CH}_2$ wavefunction is

$$\Psi = C_1 |a_1 \bar{a}_1| + C_2 |b_1 \bar{b}_1|$$

This is a FORS or CASSCF wavefunction:
- 2 active electrons in 2 active orbitals: (2,2)
- At $\theta \sim 90^\circ$: $C_1 \sim 1$, $C_2 \sim 0$: NOON $\sim 2,0$
- At $\theta = 180^\circ$: $C_1 = C_2 = 2^{-1/2}$: NOON $\sim 1,1$
Now consider N_2 dissociation:

- Breaking 3 bonds: $\sigma + 2\pi$
- Minimum correct FORS/CASSCF=(6,6)

6 electrons in 6 orbitals “active space”

- N_2 used as benchmark for new methods designed for bond-breaking
 - Head-Gordon
 - Piecuch
 - Krylov
MCSCF

- Scales exponentially within active space
 - Full CI within active space: size consistent
- Necessary for
 - Diradicals
 - Unsaturated transition metals
 - Excited states
 - Often transition states
- CASSCF accounts for near-degeneracies
- Still need to correct for rest of electron correlation: “dynamic correlation”
MULTI-REFERENCE METHODS

- **Multi-reference CI: MRCI**
 - CI from set of MCSCF configurations
 - SOCI in GAMESS
 - Most commonly stops at singles and doubles
 - MR(SD)CI: NOT size-consistent
 - Very demanding
 - ~ impossible to go past 14 electrons in 14 orbitals

- **Multi-reference perturbation theory (MBPT)**
 - More efficient than MRCI
 - Not usually as accurate as MRCI

Size-consistency depends on implementation
FULL CI

MCQDPT2

MP2

MCSCF

RHF/ROHF

correlation

basis set size

Hartree-Fock Limit

complete basis

exact answer

basis set size