EXCITED ELECTRONIC STATES USING GAMESS
LEVELS OF THEORY

• Singles CI
 – All single excitations from RHF ground state
 – Brillioun Theorem: $\langle \Psi_0 | H | \Psi_i^a \rangle = 0$
 • No improvement of ground state
 – Simplest level of theory for excited states
 – Accuracy ~ Hartree-Fock
 – Best for lowest lying excited states
 – Fails for states dominated by double excitations
 • Common for higher excited states
SINGLES CI

• In GAMESS
 – $\text{CONTROL} \ \text{CITYP}=\text{CIS} \ \ldots \ $\text{END}
 – CIS
 • NSTATE=('# of states requested')
 • ISTATE=(choose one)
 • MULT=(spin multiplicity)
 • CISPRP={.T., .F.}
 – Generates properties for ISTATE
 – Requires calculation of density matrix
 – Can do geometry opts using analytic gradients
LEVELS OF THEORY

• CISD
 – All single and double excitations from RHF ground state
 – Much more accurate than CIS
 – Much more time-consuming than CIS
 • Requires \((vv|oo)\) and \((vo|vo)\) integrals
 – Analytic gradients available
 • Very time-consuming
CISD

• In GAMESS
 – $\text{CONTRL CITYP=GUGA ... END}$
 – CIDRT
 • GROUP= (point group or subgroup)
 • IEXCIT=2 (CISD)
 – This will generate all single and double excitations
 • Can reduce the computational effort using
 – NFZV= (# omitted virtuals)
 – Not systematic
LEVELS OF THEORY

• EOM-CC
 – Equations of motion (EOM) coupled cluster
 – Calculates excitation energies directly
 • More accurate than subtracting excited - ground state
 – Much more accurate than CIS
 • Options include EOM-CCSD(T), CR-EOM-CCSD(T)
 • Starting wave function can come from CIS or CISd
 – Small d means identify active space for doubles
 – Much more time-consuming than CIS or CISD
 – No analytic gradients
EOM-CC

• In GAMESS
 – \texttt{$CONTRL\ CCTYP=EOM-CCSD\ \ldots$END}
 – \texttt{$EOMINP$}
 • \texttt{GROUP=} (point group or subgroup)
 • \texttt{MTRIP=}
 – Method for triples
 » 1=CR-EOMCCSD(T) standard
 » 2=CR-EOMCCSD(T) iterative CISD starting point
 » See manual for other options
 • \texttt{MINIT=}
 – Initial guess procedure for EOM procedure
 » 1=CISd (see manual for options)
 » 2=CIS
LEVELS OF THEORY

• Multi-reference CI
 – CI on top of MCSCF
 • FOCI (first order CI): All single excitations from each MCSCF determinant
 • SOCI (second order CI): All single & double excitations from each MCSCF determinant
 • Better than CIS or CISD since orbital space is re-optimized in MCSCF step
• In GAMESS
 – Assume MCSCF was done in previous run, orbitals have been checked and read in using $VEC
 – $CONTRL CITYP=GUGA
 – $CIDRT
 • GROUP= (point group or subgroup)
 • FOCl=.T. or SOCl=.T.
COMING TO GAMESS

• Time-dependent density functional theory (TDDFT)
 – Similar approach to EOM-CC
 – Similar level of theory to CIS, except based on DFT
 • Single excitations from Kohn-Sham determinant
 • More accurate than CIS since DFT better than HF
 • Fails for states dominated by double excitations
 • Like DFT, tough to predict success or failure
• Many excited electronic states of various spins
 – Surface crossings are common
 • Different spin states: intersystem crossings
 – Spin-orbit coupling (SOC) can be important
 – Several SOC methods in GAMESS
 » Full all-electron (Breit-Pauli)
 » Partial two-electron (P2E)
 » One-electron Z_{eff} method
 • Same spin states
 – Born-Oppenheimer breakdown
 – Derivative (vibronic) coupling important
 – Both lead to radiationless transitions
 – Essential processes in photochem, photobiology