AN INTRODUCTION TO MCSCF: PART 2
\(\Psi_{hp} = \psi_1(1)\psi_2(2)\ldots\psi_N(N) \)

- Hartree product (hp) expressed as a product of spinorbitals \(\psi_i = \phi_i\sigma_i \)
- \(\phi_i = \text{space orbital, } \sigma_i = \text{spin function } (\alpha, \beta) \)
- Pauli Principle requires antisymmetry:

\[
\Psi = \hat{\mathbf{A}}\Psi_{hp} = |\psi_1(1)\psi_2(2)\ldots\psi_N(N)|
\]

- Closed Shells:

\[
\Psi = |\phi_1\bar{\phi}_1\phi_2\bar{\phi}_2\ldots\phi_N\bar{\phi}_N |
\]
• For more complex species (one or more open shells) antisymmetric wavefunction is generally expressed as a linear combination of Slater determinants.

• For example, consider simple excited state represented by excitation $\phi_i \rightarrow \phi_a$ out of closed shell:

$$\Psi = 2^{-1/2} \left[| \phi_1 \phi_1 \phi_2 \phi_2 \cdots \phi_i \phi_a \cdots \phi_N \phi_N | \pm | \phi_1 \phi_1 \phi_2 \phi_2 \cdots \phi_a \phi_i \cdots \phi_N \phi_N | \right]$$
• For more complex open shell species (e.g., low-spin open shells with multiple partially filled orbitals, such as s\(^1\)d\(^7\) Fe) wavefunctions are linear combinations of several determinants.

• But, the coefficients on these determinants are determined by spin and symmetry, not by the Variational Principle
HARTREE-FOCK METHOD

• Optimization of the orbitals (minimization of the energy with respect to all orbitals), based on the Variational Principle) leads to Hartree-Fock equations (closed shells):

$$\hat{F}\phi_i = \varepsilon_i \phi_i$$

• For open shells, there are multiple Fock operators, one for each type of orbital occupancy; e.g. UHF: $\hat{F}_\alpha, \hat{F}_\beta$
LCAO METHOD

• Generally solve HF problem by LCAO expansion: expand ϕ_i as linear combination of basis functions (AOs), χ_{μ}:

\[\phi_i = \sum_{\mu} \chi_{\mu} C_{\mu i} \]

• The $C_{\mu i}$ are expansion coefficients obtained via the Variational Principle

 – $FC = SC\epsilon$
 – HFR matrix equation, solved iteratively
• Hartree-Fock (or DFT) is most common zeroth order wavefunction, but
• Many problems are not well represented by single configuration wavefunctions:
 – Diradicals (broadly defined)
 – Excited states
 – Transition states (frequently)
 – Unsaturated transition metals
 – High energy species
 – Generally, any system with near degeneracies
• In such cases, the correct zeroth order wavefunction is MCSCF:

\[\Phi = \sum_{K} A_K \Psi_K \]

• \(\Phi \) is the MCSCF wavefunction
• \(\Psi_K \) is a configuration wavefunction
 – Can be a single determinant
 – Could be a linear combination of determinants in order to be spin-correct
 – Generally called configuration state function (CSF), meaning spin-correct, symmetry-correct configuration wavefunction
\[\Phi = \sum_{K} A_K \Psi_K \]

- Generally, two approaches to treating \(\Phi \) in computer codes:
 - Expand in terms of CSFs
 - Most commonly GUGA (graphical unitary group approach)
 - Made feasible by Shavitt, Schaefer
 - Expand directly in terms of determinants
 - Generally faster code
 - More determinants to deal with
 - Each determinant not spin-correct, but easily dealt with
 - On balance, preferred method if code is well written
 - GAMESS code written by Joe Ivanic, \(~\) as fast as any such code
- Both available in GAMESS
\[\Phi = \sum_{K} A_K \Psi_K \]

- \(A_K \) are CI expansion coefficients
 - Determined variationally using linear variation theory

\[<E> = \langle \Phi | \hat{H} | \Phi \rangle = \sum_{K,L} A_K A_L \langle \Psi_K | \hat{H} | \Psi_L \rangle \]

\[\frac{\partial <E>}{\partial A_K} = 0, \ldots \]

\[HA = AE \]

- Solution of this (non-iterative) matrix eigenvalue equation yields
 - MCSCF energies \(E_M \) for each electronic state
 - CI coefficients \(A_{KM} \) corresponding to state \(M \)
MCSCF METHOD

• Solution of MCSCF problem requires two sets of iterations to solve for two sets of coefficients
 – For each set of CI coefficients A_K, solve for LCAO coefficients $C_{\mu i}$ (micro-iterations)
 – For given set of $C_{\mu i}$, solve CI equations for new A_K
 – Continue until self-consistency
MCSCF METHOD

• Most common implementation is FORS (fully optimized reaction space)/CASSCF (complete active space) SCF
 – Define active space in terms of orbitals and electrons
 – Perform full CI within active space
 – Very “chemical” approach
 – Can be computationally demanding
 • Ideal active space is full valence
 • Not always feasible; upper limit is (16,16)
 – Sometimes tricky to choose active space
Two sets of coefficient optimizations

- CI coefficients optimized by solving linear variation secular equation
- Orbital optimization analogous to, but more complex than, simple HF solutions

 - Need to optimize mixing between sets of subspaces: core, active, virtual

 - Core-active
 - Active-virtual
 - Core-virtual

- Cf., HF high-spin open shell: Fock operators for

 - Doubly occupied-singly occupied
 - Doubly occupied-virtual
 - Singly occupied virtual
• Orbital optimizations
 – As for HF, each subspace invariant to internal mixing
 – Only mixing between subspaces will change energy
 – **Exception**: if MCSCF is not FORS/CASSCF (CI is not Full CI), must also optimize active-active mixing:
 • FORS simpler although more demanding computationally
 • Non-FORS less robust, more difficult to converge
 – Can think of optimization variables as rotation angles connecting orbitals in different subspaces (recall UHF)
• Orbital optimizations
 – Taylor expansion of orbital gradient
 • \(g(x) = E'(x) = g(x_0) + g'(x_0) \cdot (x-x_0) + \cdots \)
 • \(g' = E'' = \text{orbital hessian} \) - second derivative of energy wrt orbital rotations \(x \). So, at optimal \(E \)
 • \(E'(x) = 0 = E'(x_0) + E''(X_0) \cdot (x-x_0) \), ignoring higher order terms. Rearranging,
 • \(x = x_0 - E'(x_0)/E''(x_0) \): Newton-Raphson equation
 • In many dimensions, \(x \) is vector
 – Completely analogous to geometry opt
 – Exact calc of orbital hessian (FULLNR=.T.)
 • Takes much more AO to MO 4-label integral transformation time (need 2 virtual indices as in \([vo|vo]\), \(v = \text{virtual}, o = \text{occupied} \))
 • More memory required
– As in geom opt, alternative to FULLNR is approximate updating of orbital hessian
 • SOSCF=.T.: calc diagonal, guess off-diagonal
 • Takes more iterations, but less time.
 • Convergence less robust
 • Easily can do 750 basis functions on workstation
– Alternatives are
 • JACOBI: simple pairwise rotations, similar to SCFDM
 • FOCAS: uses only orbital gradients, not even diagonal hessian elements as in SOSCF. Each iteration is faster, but many more required
– Best strategy
 • Start with SOSCF
 • Use FULLNR as backup
CHOOSING ACTIVE SPACES

• Full valence active space
 – Occupied orbitals are usually easy: choose all of them.
 – Virtual orbitals not always easy:
 • # of orbitals wanted = minimal valence basis set
 • # of available virtuals generally much larger
 • Virtuals are generally more diffuse and not easy to identify, especially with
 – Large basis sets
 – Transition metals
 – High symmetry
• Strategies for full valence active space
 – MVOQ in SCF
 • Since virtual MOs are typically diffuse, ease of identification is improved if they are made more compact
 • MVOQ = n removes n electrons from SCF calculation
 • Generates a cation with +n charge - pulls orbitals in
 • Easier to find correct virtuals for active space
 • Improved convergence
• Strategies for full valence active space
 – Localized orbitals (LMOs)
 • Specify LOCAL=BOYS or RUDNBERG in $CONTRL
 • Transforms orbitals to bonds, lone pairs
 • Easier to understand occupied FV space
 • Can use these to construct virtual part of FV active space
 • Disadvantage: LMOs destroy symmetry, so the size of the problem (\# of determinants) increases
 • Partial solution: symmetry localized orbitals can be specified using SYMLOC=.T. in $LOCAL
 – Localizes orbitals only within each irrep
 – Sometimes not localized enough
• **Strategies for less than FV active space**
 – Need to identify “chemically important” orbitals
 • Orbitals directly involved in the chemical process
 • Orbitals that may interact strongly with reacting orbitals
 – **Examples**
 • Recall H$_2$:
 – Active space includes H-H bonding orbital and H-H*
 – FORS(2,2): 2 electrons in 2 orbitals
 • **Internal rotation in ethylene**
 – FV active space is (12,12)
 – Minimum active space includes only CC $\sigma,\pi,\pi^*,\sigma^*$: (4,4)
 – The two active spaces give ~same internal rotation barrier
 – This active space cannot account for other processes, such as C-H bond cleavage
– More Examples

• Internal rotation in H$_2$C=NH
 – Start with analogous active space to ethylene: CN (4,4)
 – Recognize that N lone pair will interact with π system as internal rotation takes place
 – Add N lone pair to active space: (6,5), 6 electrons in 5 orbitals
 – Also correctly describes dissociation to H$_2$C + NH: NH fragment will be correctly described by $\sigma^2\pi_x^1\pi_y^1$

• Dissociation of H$_2$C=O -> H$_2$C + O
 – Again, start with CO (4,4)
 – Recognize O has two lone pairs, one 2s, one 2p
 – Recognize that 2s lone pair has low energy & likely inactive
 – Including 2p lone pair [(6,5) active space] ensures three 2p orbitals are treated equally in dissociated oxygen
 – Isomerization to HCOH requires additional (4,4) from CH/OH
• Important to consider both reactant and product when choosing active space
 – Ensures number of active electrons & orbitals are same
 – Verifies reactant orbitals will be able to convert smoothly into product orbitals.
 – Transition state orbitals can help make this transition smooth
- Consider isomerization of bicyclobutane to 1,3-butadiene

- Superficially only need to break two bonds: FORS(4,4)
- But, to treat all peripheral bonds equally, need all of them in active space: FORS(10,10)

- Now, consider isoelectronic NO dimer, N₂O₂
• Replace two bridge CH groups with nitrogens
• Replace two peripheral CH$_2$ groups with oxygens
• Very high energy species: important HEDM compound
• First guess at good active space might be (10,10)
• But, one O lone pair on each O interacts strongly and must be included in active space for smooth PES
• Correct active space is (14,12)
• Pay attention to orbitals along reaction path!
MULTI-REFERENCE DYNAMIC CORRELATION

• Multi-reference CI: MRCI
 – CI from set of MCSCF configurations
 – Most commonly stops at singles and doubles
 • MR(SD)CI: Very demanding
 • ~ impossible to go past 14 electrons in 14 orbitals

• Multi-reference perturbation theory
 – Several flavors: CASPT2, MRMP2, GVVPT2
 – Mostly second order (except CASPT3)
 – More efficient than MRCI
 – Not usually as accurate as MRCI
MULTI-REFERENCE DYNAMIC CORRELATION

- MRCI, MRPT generally not size-consistent
 - +Q correction can make MRCI nearly size consistent
 - MRPT developers like to say the method is “not quite size-consistent”
 - Cf., GN methods are “slightly empirical”
STRATEGIES FOR INCONSISTENT ACTIVE SPACES

- Sometimes different parts of PES require different active spaces. Strategies
 - Optimize geometries, obtain frequencies with separate active spaces
 - Final MRPT or MRCI with composite active space
 - If composite active space is too large
 - Optimize geometries with separate active spaces
 - Use MRPT with separate active spaces to correlate all electrons
Complex wavefunctions like MCSCF are very useful, but qualitative interpretations are important.

Two useful tools are:
- Natural orbitals
- Localized orbitals

Natural orbitals introduced by Löwdin in 1955:
- Diagonalize the 1st order density matrix ρ
- Simply the HF orbitals for HF theory
For fully variational methods (HF, MCSCF), 1st order density matrix is simply obtained from $\Psi \Psi^*$.

For other methods (MPn, CC, MRMP), must also calculate Hellmann-Feynman contribution: requires gradient of energy.

- Eigenvectors of 1st order density matrix are natural orbitals.
- Eigenvalues are natural orbital occupation numbers (NOON): λ_i.
NATURAL ORBITAL ANALYSIS

– For RHF & ROHF, NOON are integers: 2,1,0
– For other methods, NOON are not integers
 • Deviation from 2 (occupied orbitals) or 0 (virtual orbitals) indicate importance of configurational mixing
 • For H$_2$, $\lambda_1 \sim 2$, $\lambda_2 \sim 0$ near R_e; $\lambda_1, \lambda_2 \sim 1$ near dissociation
– NOON are also good diagnostic for need for MCSCF zeroth order wavefunction
 • NOON for single reference assume non-physical values when such methods start to break down.
– Examples
Table 2. Natural orbital occupation numbers for the 1A_1 state of CH$_2$ as a function of bond angle. At each angle, the aug-cc-pVTZ/MBPT2 optimized bond length was used for all calculations. The optimum aug-cc-pVTZ/MBPT2 bond angle is 102.1 degrees.

<table>
<thead>
<tr>
<th>Angle</th>
<th>Method</th>
<th>Principal Lone Pair NOON</th>
<th>non-Physical NOON</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.0</td>
<td>MRCI</td>
<td>1.896</td>
<td>0.077</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.891</td>
<td>0.088</td>
</tr>
<tr>
<td></td>
<td>CASSCF</td>
<td>1.912</td>
<td>0.085</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.901</td>
<td>0.071</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.961</td>
<td>0.015</td>
</tr>
<tr>
<td>102.1</td>
<td>MRCI</td>
<td>1.887</td>
<td>0.086</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.885</td>
<td>0.094</td>
</tr>
<tr>
<td></td>
<td>CASSCF</td>
<td>1.906</td>
<td>0.092</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.894</td>
<td>0.077</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.962</td>
<td>0.014</td>
</tr>
<tr>
<td>120.0</td>
<td>MRCI</td>
<td>1.862</td>
<td>0.112</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.871</td>
<td>0.107</td>
</tr>
<tr>
<td></td>
<td>CASSCF</td>
<td>1.894</td>
<td>0.105</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.876</td>
<td>0.095</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.961</td>
<td>0.015</td>
</tr>
<tr>
<td>150.0</td>
<td>MRCI</td>
<td>1.668</td>
<td>0.303</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.771</td>
<td>0.203</td>
</tr>
<tr>
<td></td>
<td>CASSCF</td>
<td>1.797</td>
<td>0.201</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.772</td>
<td>0.196</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.961</td>
<td>0.016</td>
</tr>
<tr>
<td>170.0</td>
<td>MRCI</td>
<td>1.104</td>
<td>0.865</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.133</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>CASSCF</td>
<td>1.154</td>
<td>0.846</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.612</td>
<td>0.354</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.960</td>
<td>0.016</td>
</tr>
<tr>
<td>180.0</td>
<td>MRCI</td>
<td>0.984</td>
<td>0.984</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>0.982</td>
<td>0.982</td>
</tr>
<tr>
<td></td>
<td>CASSCF</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.572</td>
<td>0.394</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.960</td>
<td>0.016</td>
</tr>
<tr>
<td>R (Å)</td>
<td>Natural Orbital Occupation Numbers</td>
<td>σ</td>
<td>π</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------------</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>1.078</td>
<td>MCSCF</td>
<td>1.983</td>
<td>1.945</td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
<td>1.964</td>
<td>1.924</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.966</td>
<td>1.924</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.963</td>
<td>1.930</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.956</td>
<td>1.922</td>
</tr>
<tr>
<td>1.2</td>
<td>MCSCF</td>
<td>1.974</td>
<td>1.921</td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
<td>1.955</td>
<td>1.899</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.956</td>
<td>1.900</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.952</td>
<td>1.907</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.951</td>
<td>1.898</td>
</tr>
<tr>
<td>1.4</td>
<td>MCSCF</td>
<td>1.951</td>
<td>1.862</td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
<td>1.932</td>
<td>1.837</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.931</td>
<td>1.840</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.918</td>
<td>1.847</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.929</td>
<td>1.841</td>
</tr>
<tr>
<td>1.6</td>
<td>MCSCF</td>
<td>1.911</td>
<td>1.755</td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
<td>1.892</td>
<td>1.730</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.887</td>
<td>1.732</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.857</td>
<td>1.749</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.895</td>
<td>1.735</td>
</tr>
<tr>
<td>1.8</td>
<td>MCSCF</td>
<td>1.825</td>
<td>1.558</td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
<td>1.817</td>
<td>1.545</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.800</td>
<td>1.536</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.761</td>
<td>1.601</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.826</td>
<td>1.486</td>
</tr>
<tr>
<td>2.0</td>
<td>MCSCF</td>
<td>1.663</td>
<td>1.325</td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
<td>1.675</td>
<td>1.329</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.640</td>
<td>1.308</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.623</td>
<td>1.394</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.563</td>
<td>1.174</td>
</tr>
<tr>
<td>2.2</td>
<td>MCSCF</td>
<td>1.480</td>
<td>1.176</td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
<td>1.502</td>
<td>1.182</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.463</td>
<td>1.165</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.442</td>
<td>1.128</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.417</td>
<td>2.658</td>
</tr>
<tr>
<td>2.4</td>
<td>MCSCF</td>
<td>1.339</td>
<td>1.101</td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
<td>1.359</td>
<td>1.104</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.326</td>
<td>1.094</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>NONCONVERGENT</td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Natural Orbital Occupation Numbers for the 1 Curve

<table>
<thead>
<tr>
<th>R (Å)</th>
<th>Non-Physical NOON^a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCSCF</td>
</tr>
<tr>
<td>1.078</td>
<td>MRCI</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
</tr>
<tr>
<td>1.2</td>
<td>MCSCF</td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
</tr>
<tr>
<td>1.4</td>
<td>MCSCF</td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
</tr>
<tr>
<td>1.6</td>
<td>MCSCF</td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
</tr>
<tr>
<td>1.8</td>
<td>MCSCF</td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
</tr>
<tr>
<td>2.0</td>
<td>MCSCF</td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
</tr>
<tr>
<td>2.2</td>
<td>MCSCF</td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
</tr>
</tbody>
</table>
MCSCF/LMO/CI METHOD

 – Choose active space for particular bond type
 – Determine MCSCF LMOs within active space
 • These are atom-like in nature
 – Perform CI within LMO MCSCF space
 – Applied to analyze TM-MG double bonds
 • TM=transition metal (or Tom)
 • MG=main group (or Mark Gordon)
• Possible resonance contributors

- Straight line = covalent structure, electrons shared
- Arrow = ionic structure, both electrons on atom at base of arrow
- Lower arrow = σ, upper arrow = π
Table 1. Percent contributors of covalent and ionic resonance structures in H₂M=EH₂ compounds. Nucleophilic structures are defined as those with M\(^+\)E\(^-\) ionicity, electrophilic means M\(^-\)E\(^+\).

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>Zr</th>
<th>Nb</th>
<th>Ta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>44.6</td>
<td>40.0</td>
<td>41.5</td>
<td>39.7</td>
</tr>
<tr>
<td>C</td>
<td>36.5</td>
<td>32.8</td>
<td>37.4</td>
<td>34.1</td>
</tr>
<tr>
<td>A</td>
<td>3.8</td>
<td>4.7</td>
<td>7.6</td>
<td>6.5</td>
</tr>
<tr>
<td>B</td>
<td>2.6</td>
<td>2.9</td>
<td>4.5</td>
<td>3.9</td>
</tr>
<tr>
<td>C</td>
<td>1.9</td>
<td>5.5</td>
<td>4.8</td>
<td>6.3</td>
</tr>
<tr>
<td>D</td>
<td>9.7</td>
<td>14.1</td>
<td>11.7</td>
<td>13.4</td>
</tr>
<tr>
<td>E</td>
<td>5.5</td>
<td>30.9</td>
<td>26.3</td>
<td>26.5</td>
</tr>
<tr>
<td>F</td>
<td>34.6</td>
<td>31.5</td>
<td>24.1</td>
<td>28.2</td>
</tr>
<tr>
<td>G</td>
<td>8.2</td>
<td>6.8</td>
<td>13.2</td>
<td>11.0</td>
</tr>
<tr>
<td>H</td>
<td>7.3</td>
<td>8.1</td>
<td>8.1</td>
<td>7.6</td>
</tr>
<tr>
<td>I</td>
<td>0.3</td>
<td>0.9</td>
<td>0.9</td>
<td>1.5</td>
</tr>
<tr>
<td>Neut.</td>
<td>54.6</td>
<td>50.6</td>
<td>56.0</td>
<td>53.0</td>
</tr>
<tr>
<td>Nucl.</td>
<td>36.8</td>
<td>38.6</td>
<td>29.8</td>
<td>35.3</td>
</tr>
<tr>
<td>Elec.</td>
<td>9.4</td>
<td>10.8</td>
<td>13.4</td>
<td>12.5</td>
</tr>
</tbody>
</table>

This method 1st showed σ ylide structure D is an important resonance contributor.
NEW DEVELOPMENTS

• ORMAS (Joe Ivanic)
 – Occupation restricted multiple active spaces
 – Method for expanding size of MCSCF
 • Identify several smaller subspaces
• Eliminating deadwood from MCSCF, CI
 – Ruedenberg, Ivanic, Bytautas
 – Approaches exact Full CI
• Parallel MCSCF, CI
$CONTRL SCFTYP=MCSCF RUNTYP=ENERGY NZVAR=3 COORD=ZMT $END
$SYSTEM TIMLIM=5 MEMORY=300000 $END
$BASIS GBASIS=STO NGAUSS=3 $END
$DATA
Methylene...1-A-1 state...MCSCF/STO-3G
 Cn 2
 C
 H 1 rCH
 H 1 rCH 2 aHOH
 rCH=1.09
 aHOH=130.0
$END
$GUESS GUESS=MOREAD NORB=7 $END
$MCSCF CISTEP=GUGA $END
$DRT NMCC=3 NDOC=1 NVAL=1 FORS=.T. GROUP=C2V $END
Methylene...1-A-1 state...MCSCF/STO-2G
E(RHF)= -38.3704886597, E(NUC)= 6.1450312399, 8 ITERS
$VEC
1 1 9.93050334E-01 3.06416919E-02 0.00000000E+00 0.00000000E+00 7.13949414E-03
1 2-7.56284556E-03-7.56284556E-03
2 1-2.13664212E-01 6.49200772E-01 0.00000000E+00 0.00000000E+00 1.82338446E-01
2 2 2.71289288E-01 2.71289288E-01
3 1 0.00000000E+00 0.00000000E+00 5.42052798E-01 0.00000000E+00 0.00000000E+00
3 2-4.66619722E-01 4.66619722E-01
4 1 1.43219334E-01-6.53818237E-01 0.00000000E+00 0.00000000E+00 7.44709913E-01
4 2 2.24175347E-01 2.24175347E-01
5 1 0.00000000E+00 0.00000000E+00 1.00000000E+00 0.00000000E+00 0.00000000E+00
5 2 0.00000000E+00 0.00000000E+00
6 1 0.00000000E+00 0.00000000E+00 1.08196576E+00 0.00000000E+00 0.00000000E+00
6 2 8.37855220E-01-8.37855220E-01
7 1-1.69243066E-01 1.08779602E+00 0.00000000E+00 0.00000000E+00 8.71412547E-01
7 2-9.04841898E-01-9.04841898E-01
$END
EXAM06.
1-A-1 CH2 MCSCF methylene geometry optimization.

At the initial geometry:
The initial energy is -37.187342653,
the FINAL E= -37.2562020559 after 14 iterations,
the RMS gradient is 0.0256396.

After 4 steps,
FINAL E= -37.2581791686, RMS gradient=0.0000013,
r(CH)=1.1243359, ang(HCH)=98.8171674

$CONTRL SCFTYP=MCSCF RUNTYP=OPTIMIZE NZVAR=3 COORD=ZMT
$END
$SYSTEM TIMLIM=5 MEMORY=300000 $END
$BASIS GBASIS=STO NGAUSS=2 $END
$DATA
 Methylene...1-A-1 state...MCSCF/STO-2G
 Cnv 2

 C
 H 1 rCH
 H 1 rCH 2 aHOH

 rCH=1.09
 aHOH=99.0
$END
$ZMAT ZMAT(1)=1,1,2, 1,1,3, 2,2,1,3 $END

Normally one starts a MCSCF run with converged SCF orbitals
$GUESS GUESS=HUCKEL $END

two active electrons in two active orbitals.
must find at least two roots since ground state is 3-B-1

$DET NCORE=3 NACT=2 NELS=2 NSTATE=2 $END